1293 reflections
84 parameters
H -atom parameters not refined

Extinction correction: none Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} \alpha^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Sl \dagger	0.54750 (4)	0.24220 (2)	0.81470)(1)	0.0682 (3)
C2	0.70800 (1)	$0.23220(9)$	0.73190 (4)	0.0680 (1)
C3	0.73520(1)	0.15510(2)	0.64840 (4)	$0.0700(1)$
C4 \dagger	0.62370 (1)	0.09620 (7)	0.65330 (3)	$0.0839(8)$
C5	0.51110 (1)	0.14230 (7)	0.74560 (3)	0.0519 (7)
C6	0.38400 (1)	0.11030 (7)	0.79260 (4)	0.0564 (8)
C7	0.27890 (1)	0.08220 (8)	0.83780 (4)	0.0600 (9)
C8	0.16000 (1)	0.04850 (8)	0.89910 (4)	0.0625 (9)
C9	0.05800 (1)	0.01790 (8)	0.96390 (4)	0.0636 (9)
S4 \ddagger	0.62370 (1)	$0.09620(7)$	0.65330 (3)	0.0839 (8)
$\mathrm{C} \ddagger \ddagger$	(0.54750 (4)	0.24220 (2)	(0.8147)(1)	0.0682 (3)

\dagger Site occupancy $=0.874$. \ddagger Site occupancy $=0.126$.
Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Si-C5	1.706 (2)	C7-C6	1.189 (2)
S1-C2	1.697 (2)	C8--C9	1.203 (2)
C4-C5	1.454 (2)	C9-C9'	1.373 (2)
C4-C3	1.484 (2)	C3-C2	1.356 (3)
C5-C6	1.417 (2)	C3-S4	1.484 (2)
C5-S4	1.454 (2)	C2-Cl	1.697 (2)
$\mathrm{C} 7-\mathrm{C} 8$	1.370 (2)		
C5-S1-C2	93.4 (1)	C8-C7-C6	178.1 (2)
C5-C4-C3	105.8 (2)	C7-C8-C9	177.7 (2)
SI-C5-C4	113.2 (1)	C8--C9-C9	179.3 (2)
S1-C5-C6	121.0(1)	C5-C1-C2	93.4 (1)
S1-C5-S4	113.2 (1)		
C2-S1-C5-C4	-0.1 (1)	C3-C4-C5-S1	-0.5 (1)
$\mathrm{C} 2-\mathrm{Si}-\mathrm{C} 5-\mathrm{C} 6$	177.3 (2)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	-177.8(2)
$\mathrm{C} 5-\mathrm{Si}-\mathrm{C} 2-\mathrm{C} 3$	0.8 (2)	C5-C4-C3-C2	1.1 (2)

Symmetry code: (i) $-x,-y, 2-z$.
The disorder model, with Sl and C4 exchanging their positions in the thiophene ring, was treated by refining the model to include these two atoms having the coordinates of their counterparts, Cl and S 4 , respectively. After refining, the occupancies of the above atoms were obtained and the extent of disorder was known. The occupancies were then fixed at 0.874 and 0.126 in the final cycles. As suitable ψ-scan data were not available, DIFABS (Walker \& Stuart, 1983) was used for the absorption correction. The $U^{i j}$ values and their s.u.'s may not be reliable.

Data collection: CRYSTAN-GM (Mackay et al., 1994). Cell refinement: CRYSTAN-GM. Data reduction: CRYSTAN-GM. Program(s) used to solve structure: SIR (Altomare et al., 1994). Program(s) used to refine structure: SIR. Molecular graphics: CRYSTAN-GM. Software used to prepare material for publication: CRYSTAN-GM.

AS is grateful to The Japanese Society for the Promotion of Science, for the award of a postdoctoral fellowship. We are grateful to Dr K. Honda of NIMC, Tsukuba, Japan, for his valuable comments and discussions.

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Barrow, M. J., Milburn, G. H. W., Zeng, Z., Sarkar, A. \& Talwar, S. S. (1994). Acta Cryst. C50, 650-652.

Baughman, R. H. (1974). J. Polym. Sci. 12, 1511-1535.
Bloor, D. (1982). Developments in Crystalline Polymers, Vol. 1, edited by D. C. Bassett, p. 151. London: Applied Science Publishcrs.
Bloor, D. \& Chance, R. R. (1985). Polvdiacetylenes, NATO ASI Series, Series E, Applied Sciences, No. 102. Dordrecht: Martinus Nijhoff.
Mackay, S., Edwards, C. \& Gilmore, C. J. (1994). CRYSTAN-GM Users Manual. MacScience, Japan.
Sarkar, A., Okada, S., Matsuda, H. \& Nakanishi, H. (1998). Macromolecules. In the press.
Sarkar, A., Talwar, S. S.. Das, K. \& Sinha, U. C. (1993). Unpublished results.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wegner, G. (1972). Makromol. Chem. 154, 35-48.
Wegner, G. (1977). Chemistry and Physics of One-Dimensional Metals, edited by H. J. Keller, pp. 297-314. New York: Plenum.

Acta Cryst. (1998). C54, 1521-1523

2-Chloro-3-cyano-6-phenylpyridine

Michal K. Cyrañski† and Józef Mieczkowski
Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland. E-mail: chamis@chem.uw.edu.pl

(Received 10 November 1997; accepted 23 April 1998)

Abstract

The molecular structure of the title compound (2-chloro-6-phenylpyridine-3-carbonitrile, $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{2}$) is presented. The molecule is nearly planar. Despite strong substituent interactions, the aromaticity of the pyridine fragment is very high.

Comment

2,3,6-Substituted pyridines are very useful compounds for the synthesis of natural products with biological activity, such as vitamins (Perez-Medina et al., 1947). Some of them possess bacteriostatic properties (Lesher \& Grvet, 1973). The title compound, (I), crystallizes in the $P 2_{1} / c$ space group. The molecular parameters are in good agreement with those of 2-chloro-3-cyano-4-trifluoromethyl-6-phenylpyridine (Guttsait et al., 1987) and with those of other α-phenylpyridine derivatives [16 precisely measured derivatives taken from the Cambridge Structural Database (Allen et al., 1979, 1991)]. The only significant differences in the latter case

[^1]are in the N1-C2 bond length [mean value of $1.342 \AA$ compared with 1.311 (2) \AA in (I)] and the bond angles at the substitution positions ($\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 2-\mathrm{C} 3-$ C4).

(I)

The molecule is nearly planar and the angle between the rings is $3.13(6)^{\circ}$, which is similar to the value of 5° obtained for the two independent molecules of 2-chloro-3-cyano-4-trifluoromethyl-6-phenylpyridine (Guttsait et al., 1987). In other derivatives of α-phenylpyridine [10 unsubstituted in the position ortho to the pyridinephenyl bond retrieved from the Cambridge Structural Database (Allen et al., 1979, 1991)], the angle between the rings varies to a large extent (range $5.1-40.8^{\circ}$, mean 22.2°). Despite strong substituent interactions, the aromaticity (Kruszewski \& Krygowski, 1972; Krygowski \& Cyrañski, 1996a) of the pyridine ring is very high (0.977), with a value similar to those observed for other pyridine derivatives (Krygowski \& Cyrañski, 1996b), as well as for $1,2,5$-trisubstituted benzene derivatives (Cyrañski \& Krygowski, 1996). The atomic numbering is given in Fig. 1, while selected bond lengths are given in Table 1.

Fig. 1. A view of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

For the synthesis of (I), acetophenone was condensed with ethyl formate in the presence of sodium hydride. The sodium enol salt was treated with cyanoacetamide and 6-phenyl-3-cyano-2-pyridone was formed. Reaction of this pyridone with phosphorous pentachloride gave the title compound. (I), with the same melting point as reported in the literature (PerezMedina et al., 1947). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{2} & \mathrm{Cu} K \alpha \text { radiation } \\
M_{r}=214.65 & \lambda=1.54178 \AA
\end{array}
$$

Monoclinic
$P 2_{1} / c$
$a=6.585(1) \AA$
$b=11.066$ (2) \AA
$c=14.207(3) \AA$
$\beta=101.45(3)^{\circ}$
$V=1014.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.405 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Kuma KM-4 diffractometer ω / θ scans Absorption correction: none 3028 measured reflections 2119 independent reflections 1617 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{nt}}=0.037$

Refinement

Refinement on F^{2}
$R(F)=0.050$
$n \cdot R\left(F^{2}\right)=0.132$
$S=1.077$
2104 reflections
165 parameters
All H atoms refined
$n^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1009 P)^{2}\right.$
$+0.0744 P]$
where $P=\left(F_{o}^{2}+2 F_{i}^{2}\right) / 3$

Cell parameters from 82 reflections
$\theta=0.2-79.0^{\circ}$
$\mu=3.023 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism
$0.30 \times 0.25 \times 0.25 \mathrm{~mm}$
Colorless

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

	$1.311(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.389(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.348(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.373(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.395(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.393(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$118.4(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.3(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$124.9(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.1(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$116.5(2)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.7(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-0.3(2)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-178.8(2)$
$\mathrm{N} 1-\mathrm{C}-\mathrm{C}-\mathrm{C} 12$	$179.2(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.7(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12$	12		

H atoms were located from a difference map and refined isotropically.

Data collection: KM-4 Softr'are (Kuma Diffraction, 1991). Cell refinement: KM-4 Softruare. Data reduction: KM-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTLIPC (Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

This work was supported by research grant BST24/97. We are grateful to Professor Z. Gałdecki for his kind permission to use the SHELXTL program for creating drafts.

[^2]
References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Crust. B35, 2331-2339.
Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Cyrañski, M. \& Krygowski, T. M. (1996). J. Chem. Inf. Comput. Sci. 36, 1142-1145.
Guttsait, A. V., Belyakov, S. V., Mishnev, A. F., Bleidelis, Ya. Ya. \& Gudrinietse. E. Yu. (1987). Khim. Geterotsikl. Soedin. pp. 12331237.

Kruszewski, J. \& Krygowski, T. M. (1972). Tetrahedron Lett. pp. 3839-3942
Krygowski, T. M. \& Cyrañski, M. (1996a). Tetrahedron, 52, 17131722.

Krygowski, T. M. \& Cyrañski. M. (1996b). Tetrahedron, 52, $10255-$ 10264.

Kuma Diffraction (1991). KM-4 Software. Version 5.0. Kuma Diffraction, Wrocław, Poland.
Lesher, Y. \& Grvet, D. M. (1973). Fr. Demande, 138, 216.
Perez-Medina, L. A., Mcriella, R. P. \& McElvain, S. M. (1947). J. Am. Chem. Soc. 69, 2574-2579.
Sheldrick, G. M. (1990a). Acta Crvst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTLIPC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 1523-1525

$\mathbf{O}-\mathbf{H} \cdots \mathbf{O}, \mathbf{C}-\mathbf{H} \cdots \mathbf{O}$ and $\mathbf{C}-\mathbf{H} \cdots \boldsymbol{\pi}_{\text {arene }}$ Intermolecular Interactions in (2R/2S)-2-(1-Oxo-1,3-dihydroisoindol-2-yl)-3-phenylpropanoic Acid

Fiona Brady, John F. Gallagher and Peter T. M. Kenny
School of Chemical Sciences, Dublin City University, Dublin 9. Ireland. E-mail: gallagherjfg@dcu.ie

(Received 30 January 1998; accepted 20 April 1998)

Abstract

The title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$, forms a hydrogenbonded network in the solid state consisting of O $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}, \mathrm{C}_{\text {arcne }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and $\mathrm{C}_{\text {arene }}-\mathrm{H} \cdots \pi_{\text {arene }}$ intermolecular interactions, with shortest $\mathrm{O} \cdots \mathrm{O}, \mathrm{C} \cdots \mathrm{O}$ and $\mathrm{C} \cdots \mathrm{C}$ distances of $2.625(2), \quad 3.281$ (3) and 3.652 (3) Å, respectively. The interplanar angle between the five- and six-membered rings of the isoindole system is $1.07(14)^{\circ}$, with the carbonyl O atom 0.110 (3) \AA from the $\mathrm{C}_{4} \mathrm{~N}$ ring plane.

Comment

The study of biologically active molecules is of primary importance in medicinal chemistry. Processes such as hormone processing, viral replication and cancer cell invasion are critically dependent on protease enzymes which have recently become attractive target molecules in drug design (Testa et al., 1993). Many inhibitors are based on modified amino acids which incorporate the basic structural features determining normal enzymesubstrate interactions. Phthalimidine (isoindolin-l-one) derivatives often display biological activity as potential anti-inflammatory agents and antipsychotics. The majority of structurally determined phthalimidine systems are either N -substituted or have a hydroxy substituent at the 3-position (McNab et al., 1997). The title compound, (I), synthesized as a racemic mixture from dL-phenylalanine, is part of an ongoing study of hydrogen-bonding interactions in amino acid derivatives.

(I)

A view of molecule (I) (S configuration) with the atomic numbering scheme is given in Fig. 1 and selected dimensions are given in Table 1. The bond lengths and angles in the heterocyclic ring are similar to those reported previously (McNab et al., 1997) and in agreement with expected values (Orpen et al., 1994). The angle between the five- and six-membered rings of the isoindole system is $1.07(14)^{\circ}$ and the maximum deviation from planarity for an atom in either ring plane is 0.021 (1) \AA for C 3 , with the carbonyl O 3 atom 0.110 (3) \AA from the $\mathrm{C}_{4} \mathrm{~N}$ ring plane. This ring is almost perpendicular to both the carboxylic acid CO_{2} plane $\left[84.74(15)^{\circ}\right.$] and the 3-phenyl ring plane

Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1072). Services for accessing these data are described at the back of the journal.

[^1]: \dagger A holder of the Foundation for Polish Science (FNP) grant.

[^2]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV 1021). Services for accessing these data are described at the back of the journal.

